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The fibre pull-out energy of misaligned short
fibre composites
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Institute for Polymer Research Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany

A theoretical study on the fibre pull-out energy has been carried out for short fibre-reinforced

composites. Two probability density functions were introduced for modelling the

fibre-length distribution and the fibre-orientation distribution. By taking into account the

effect of snubbing friction between fibres and matrix at the fibre exit point during fibre

pull-out, and that of the fracture stress of fibres obliquely crossing the fracture plane (i.e. the

inclined strength of fibres), the fibre pull-out energy of composites has been derived as

a function of fibre-length distribution and fibre-orientation distribution, as well as interfacial

properties. The previously existing fibre pull-out energy theories can be deduced from the

present model. The effects of fibre-length distribution, fibre-orientation distribution,

interfacial properties, snubbing-friction coefficient and parameter A for determining the

inclined strength of fibres on the fibre pull-out energy, have been studied in detail. The

present study provides the necessary information as to which fibre-length distribution,

fibre-orientation distribution and interfacial property are required to achieve a desired fibre

pull-out energy and hence a desired composite toughness. High-strength fibres, a large

fibre-volume fraction and a large fibre diameter for a comparatively large mean fibre length,

are shown to be favourable for achieving a high fibre pull-out energy.
1. Introduction
Short fibre-reinforced composites have many applica-
tions as engineering materials. Fracture resistance is
one important property of engineering materials, and
a measure of fracture resistance is given by the specific
work of fracture, or the fracture toughness. Kim and
Mai [1] have recently given a comprehensive review
of the fracture toughness of fibre composites. It has
been indicated that the fracture toughness of com-
posites depends not only on the properties of constitu-
ents but also significantly on the bonding efficiency
across the interface. For short fibre composites, the
failure mechanisms can be concluded from the litera-
ture [1—8] and are listed as follows: (1) fibre—matrix
interfacial debonding, (2) post-debonding friction,
(3) matrix plastic deformation, (4) fibre plastic defor-
mation, (5) fibre fracture, (6) matrix fracture, (7) fibre
pull-out. However, it is not necessary for all these
failure mechanisms to operate simultaneously for
a given fibre—matrix system, and in some composites,
one of these toughness contributions may dominate
the total fracture toughness of short fibre composites.
For brittle fibre—brittle matrix systems, the toughness
contribution of fibre pull-out is the principal term [7].
For brittle fibre—ductile matrix systems, the matrix
deformation is constrained due to the presence of
fibres, especially when the content of fibres in the
composites is high [9], the brittle fracture of ductile
matrices was observed in the injection-moulded short
glass fibre-reinforced thermoplastics [10], hence the

toughness contribution of the matrix is seriously lim-
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ited. On the other hand, for injection-moulded glass
fibre-reinforced thermoplastics, the most important
energy-absorbing mechanism related to short fibres is
that of fibre pull-out [9]; for injection-moulded long
glass fibre-reinforced polyamide 6, fibre pull-out has
been indicated to be the major energy-absorbing
mechanism in the composite [11]. So the fibre pull-
out is one important energy-absorbing mechanism for
brittle discontinuous fibre—ductile matrix composites.
For a ductile fibre—brittle matrix system, e.g. nickel
and steel fibre-reinforced cements, fibre pull-out has
also been indicated to be the dominant failure mecha-
nism [12]. From this short review, it becomes clear
that the fibre pull-out mechanism is the important one
for the short fibre-reinforced composites mentioned
above. Moreover, it was pointed out that the main
source of fracture toughness of most high-perfor-
mance composites is fibre pull-out energy [1]. How-
ever, Lauke et al. [2] considered the fracture process
of comparatively ductile thermoplastics composites
with aligned glass fibres of subcritical transfer length.
Under static loading conditions, intensive plastic flow
occurs locally in the matrix and the contribution of
matrix to the work of fracture in this case is predomi-
nant; a similar phenomenon was observed by Gupta
et al. [8] for short glass fibre-reinforced polypropylene
with most fibres of subcritical length. Consequently,
the following question has to be answered: what fac-
tors influence the fibre pull-out energy and under what
circumstances will the fibre pull-out energy be high

enough for a given fibre—matrix system, and hence the
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fracture toughness of composites, to be improved con-
siderably through enhancing the fibre pull-out energy
by controlling the factors? To find the answer, a
proper fibre pull-out energy theory is required.

For unidirectional short fibre composites, all the
fibres are pulled out when the fibre length, ¸, is less
than the critical transfer length, ¸
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where r
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is the tensile strength of fibres which align
in the loading direction, s

*
the interfacial shear stress,

d
&
the fibre diameter.
Assuming the fibre pull-out length, ¸

10
, varies

between 0 and ¸/2 with a mean value of ¸/4, the fibre
pull-out energy, w

10
(normalized by the fracture

plane), is given by [1, 13, 14]
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where s
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is the interfacial frictional shear stress and
it is assumed to be a constant; »
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is the fibre volume
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If the fibres are of a length greater than ¸
#
, the fraction

of fibres which are pulled out will then be ¸
#
/¸ (on the

basis of normal probability) and ¸
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ranges from 0 to
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/2. Hence w

10
becomes

w
10
"

»
&
s
&
¸2
#

6d
&
A
¸

#
¸B for ¸'¸

#
(4)

When there is a distribution of fibre lengths, the
fibre pull-out energy can be expressed as follows
[8, 15]

w
10
"

s
&

6d
&

+
L*

)L#

»
*
¸2

*
#

s
&
¸3

#
6d

&

+
L+;L#

»
+

¸
+

(5)

The first summation refers to subcritical fibres
(¸(¸

#
) and the second to supercritical fibres

(¸'¸
#
). ¸

*
and ¸

+
are the fibre lengths of subcritical

and supercritical fibres, respectively; »
*
and »

+
denote

the subfractions of sub- and supercritical fibres,
respectively.

For non-undirectional composites with short fibres
of a constant length, the fibre pull-out energy was
studied by Jain and Wetherhold [6, 7]. The effect of
snubbing friction between fibres and matrix at the
fibre exit point was taken into account when the fibres
obliquely cross the fracture plane. The interfacial fric-
tion shear stress is assumed in the following form
[6, 16]
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where a
0
, a

1
and a

2
are constants, determined empir-

ically; d is the crack-opening displacement of com-
posites. If the pull-out force in the shorter segment
exceeds the minimum force to pull out the longer
segment, the longer segment will actually pull out; if

longer embedded segments do not pull-out, the fol-
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The fibre pull-out energy can be expressed as
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where A
&

is the cross-sectional area of fibre, l the
snubbing-friction coefficient which is defined by Li
et al. [17], and h the angle between fibre axis and the
loading direction. Also
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where h(h) is a probability per unit area on a hemi-
sphere.

Wetherhold and Jain [6, 7] only considered the
fibre-orientation distribution, the fibre-length distri-
bution was not taken into account. However, for the
extruded and injection-moulded fibre composites,
there is not only a fibre-orientation distribution but
also a fibre-length distribution in the final product
[18—26]. In addition, for the fibre-orientation distri-
bution, only several special cases (aligned and uniform
distribution ones) were discussed [6, 7]; a general for-
mula of fibre-orientation distribution was not given.
When a fibre is pulled out at an angle with respect to
the loading direction, the fracture stress of fibres is

reduced because of the flexural stress resulting from



the fibre curvature close to the crack faces [27—30].
The fracture stress of oblique fibres is also called the
inclined strength of fibres [29], which has been in-
dicated to be a very important fibre parameter; how-
ever, it was neglected by Jain and Wetherhold [6, 7].

In the present study, two probability density func-
tions were introduced for modelling the fibre-length
and fibre-orientation distributions. The fibre pull-out
energy has been derived as a function of fibre-length
and fibre-orientation distributions and the interfacial
properties by considering the snubbing-friction effect
and the inclined fibre-strength effect. All the factors
that influence the fibre pull-out energy have been dis-
cussed in detail, so that the necessary information can
be provided to achieve a high fibre pull-out energy
and hence a high fracture toughness of composites for
a given fibre/matrix system.

2. Theory
2.1. Fibre-length distribution
During the extrusion and injection-moulding pro-
cesses, the shear stresses exerted by the screw or ram
will break the fibres and result finally in a fibre-length
distribution with an asymmetric character with a
tail at the long fibre end [24, 31, 32]. As was done in
predicting the tensile strength of injection-moulded
short fibre-reinforced polymers [33], the fibre-length
distribution can be described with a probability den-
sity function. Let us define the fibre length probability
density function f (¸) so that f (¸) d¸ and F (¸) are the
probability density that the length of fibre is between
¸ and ¸#d¸ and the probability that the length of
a fibre is less than or equal to ¸, respectively. Then the
relation to f (¸) and F (¸) is
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P
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A two-parameter Weibull distribution function has
been proposed for modelling the fibre-length distribu-
tion and was verified to be effective in describing the
density distribution of short glass fibre-reinforced poly-
propylene [24]

f (¸)"(m/n)(¸/n)m~1 exp[!(¸/n)m] for ¸'0

(14)

where m and n are shape parameters. Ulrych et al.
[31] gave another form of Weibull distribution, i.e. the
so-called Tung’s distribution

f (¸)"ab¸b~1 exp(!a¸b) for ¸'0 (15)

where a and b are size and shape parameters, respec-
tively. Inserting b"m and a"n~m into Equation 15,
it then becomes the same as Equation 14. Also, Equa-
tion 15 has been successfully used for describing the

fibre-length distribution in short glass fibre-reinforced
polyamide (SFRP) [31]. So, in our study we adopted
this probability density function and prefer the form of
Equation 15 as the fibre length distribution function of
SFRP because it looks simple. Therefore, the cumu-
lative distribution function, F (¸), can be given by
Equations 13 and 15

F (¸)"1!exp(!a¸b ) for ¸'0 (16)

From Equation 15 we can obtain the mean fibre
length (i.e. the number average fibre length)
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where ! (x) is the gamma function. The most probable
length (mode length), ¸
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, can be obtained by differ-

entiating Equation 15 and letting the resultant equa-
tion be equal to zero
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2.2. Fibre-orientation distribution
During extrusion compounding and injection-mould-
ing processes, progressive and continuous changes in
fibre orientation throughout the moulded compo-
nents take place. The changes are related in a complex
way to the size and concentration of fibres, the flow
behaviour of melted polymer matrix, the mould
cavity and the processing conditions. An orientation
distribution generally requires a three-dimensional
description. However, it will be shown that only the
orientation angle (h) between the fibre axis and the
fracture plane normal (or loading direction) needs to
be considered for evaluating the fibre pull-out energy.
A fibre-orientation distribution function, representing
the orientation angle, must have the property such
that the variation of its shape parameters is able to
describe a change from a unidirectional distribution to
a random distribution.

Let us define a fibre-orientation density function,
g(h), such that g(h) dh is the probability density that
the orientation of a fibre is between h and h#dh.
With this assumption, Xia et al. [23] proposed a two-
parameter exponential function to describe the fibre-
orientation distribution in the injection-moulded
specimens. Similar to this definition of Xia et al.’s
fibre-orientation distribution function, the fibre-
orientation distribution function is given as follows

g(h)"[sin(h)]2p~1[cos(h)]2q~1
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where p and q are the shape parameters which can be
used to determine the shape of the distribution curve,
and p*1/2 and q*1/2. Also, 0)h
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The mean fibre orientation, h
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, can be derived from
Equation 19 as
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Figure 1 Fibre-orientation distribution curves: (a) p"q"1;.
(b) p"1, q"2; (c) p"2, q"1; (d) p"1/2, q"2; (e) p"2,
q"1/2; (f ) p"q"1/2.

Differentiating Equation 19 and letting the resultant
equation be zero, we then obtain

h
.0$

"arctanM[(2p!1)/(2q!1)]1@2N (21)

Equation 21 represents the most probable fibre-
orientation angle. If p"q"1, h

.0$
"p/4; if p"1

and q'1, then h
.0$

(p/4; if p'1 and q"1, then
h
.0$

'p/4; if p"1/2, h
.0$

"0; if q"1/2, then
h
.0$

"p/2; if p"q"1/2, then there is no h
.0$

and the
fibres distribute randomly; the corresponding fibre
orientation distribution curves are shown in Fig. 1. If
p"1/2, large q indicates that fibres have a major
preferential alignment parallel to the h"0 direction;
for example, if q"100, the mean fibre-orientation
angle is evaluated to be 0.056. If q"1/2, large p indi-
cates that fibres have a major preferential orientation
normal to the h"0 direction; for example, if p"100,
the mean fibre-orientation angle is evaluated to be
1.514. So, all the cases of fibre-orientation distribution
are included in Equation 19, thus it is a suitable
probability density function for describing the fibre-
orientation distribution and will be used in the present
study.

The fibre orientation coefficient, fh , can be defined
as follows [33, 34]

fh"2 P
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g(h) cos2(h) dh!1 (22)

For fh"!1, all fibres lie perpendicular to the frac-
ture-plane normal or loading direction; fh"zero cor-
responds to a random distribution; fh"1 implies all
fibres are aligned parallel to the loading direction.

2.3. Pull-out energy for a single misaligned
fibre

To evaluate the fibre pull-out energy of short fibre
composites, the fibre pull-out load and crack-opening
displacement should be predicted. We assume that
only the shorter embedded length, l, will pull out, the
longer segment length (¸!l) will not pull out. The
interfacial frictional shear stress, s

&
(d), is assumed

to have the same form as Equation 6. If a
1
"0 and

a "0, it is a constant interfacial frictional shear stress

2

case. Fig. 2 shows the pull-out of a single fibre with
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Figure 2 Pull-out of an oblique fibre from a matrix.

shorter embedded segment of length l, orientation
angle, h, with respect to the loading direction. Owing
to the snubbing-friction effect, the pull-out load is
[6, 7, 17, 35, 36]

P (l, s, h)"s
&
(s)pd

&
(l!s) exp(lh) (23)

where s is the slippage distance of the embedded end of
the fibre. If the fibre is inextensible, then the crack-
opening displacement is identical to the slip length,
i.e. d"s. Then the fibre pull-out load is

P(l, d, h)"s
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(d)pd
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(l!d) exp(lh) for l*d (24a)

P(l, h, d)"0 for l(d (24b)

Thus the energy absorption for a single fibre of em-
bedded length, l, pulled out at an angle h is given by
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where¸
#h

is the critical fibre length for an oblique fibre
pulled out at an angle, h, with the loading direction
[33]. In the case l*¸

#h
/2, the fibre will break instead

of being pulled out. ¸
#h

can be expressed as
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where r
&6h is the fracture stress of oblique fibres

[27, 28, 30] or the so-called fibre inclined strength
[29]. For brittle fibres the fracture stress of oblique
fibres is given by [27, 28]

r
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where A is a constant determining the fibre inclined
strength. The critical transfer length of aligned fibres,
¸
#
, is defined by Equation 1, therefore ¸
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rewritten as
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2.4. Pull-out energy of short fibre
composites

Now we consider a rectangular-shaped specimen with

the lengths of the three mutually perpendicular edges



denoted by c
1
, c

2
and c

3
. The c

3
axis is chosen to be

parallel to the loading direction. A
#

and A
&

are as-
sumed to be the cross-sectional areas of the specimen
and that of the fibre, respectively.»

&
and 1̧ are the fibre

volume fraction and the mean fibre length. The total
number of fibres in the specimen is
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The fibre-length distribution and the fibre-orientation
distribution are assumed to be independent, so the
number of fibres of a length between ¸ and ¸#d¸
and an angle from h to h#dh is given by

dN"Nf (¸)g (h) d¸dh (31)

The fibres are assumed to be distributed uniformly
in the composite, so the number, dN

#
, of the fibres

of a length from ¸ to ¸#d¸ and an angle from h to
h#dh, which crosses any cross-section of the com-
posite, is

dN
#
"dN¸ cos(h)/c

3
(32)

Then the number of fibres with a shorter embedded
length between l and l#dl across any cross-section of
the composite is

dN
#
(l )"dN

#
[dl/(¸/2)] (33)

Because of the snubbing-friction effect and the fibre
inclined strength effect, the critical fibre embedded
length is reduced by a factor (1!A tan h)/exp(lh) (see
Equation 29); this accounts for the misalignment of
the fibre with respect to the applied load. Any fibre
with orientation h whose shorter embedded segment
has a length of l*¸

#h/2 will break. Then a step
function can be defined for accounting for fibre
breakage
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The fibre pull-out energy of composites is then given
by
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For a constant fibre length case, Equation 35 becomes
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The step function º(l) has been included in the integ-
rand to discount those fibres which will be broken
instead of being pulled out, so the step function effec-
tively changes the limits of integration. The percent-
age, a, of the fibres of lengths greater than ¸

#h
is

given by
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Considering Equation 30, Equation 36 can be re-
written as
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where h
0
and ¸

#h.!9
can be determined from the follow-

ing equations
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So the fibre pull-out energy of a composite with a fibre
length distribution f (¸) can finally be obtained by
superposition
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However, h
0

cannot be solved directly from Equation
40 when AO0, so it is not suitable as a limit of
integration if we would like to evaluate the fibre
pull-out energy from Equation 42 using a computer
program, for example Mathematica. To avoid this
inconvenience, another method to derive the pull-out
energy will be given. For a constant orientation angle
case, if ¸(¸

#h
, the lower and upper integration limits

of l are 0 and ¸/2; on the other hand, if ¸*¸
#h

, the
lower and upper integration limits of l are 0 and ¸
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/2.

Then, for a constant angle case, Equation 35 can be
rewritten as
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So we can obtain the fibre pull-out energy
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i.e.
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For A"0, it is easy to determine that Equations 42
and 46 give identical results. When AO0, h

0
cannot

be solved directly from Equation 40 and is then un-
suitable to be a limit of integration; thus Equation 42
is not used for evaluating w

10
. However, Equation 46

can be used easily to evaluate the fibre pull-out
energy of short fibre composites. Equation 46 can be
rewritten as
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0
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]f (¸)g (h) cos(h) exp(lh) dld¸dh
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#

a
1
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0

#

a
2
l4

12a
0
B

]f (¸)g (h) cos(h) exp(lh) dld¸dhD (47)

For a unidirectional composite with fibres of a length
¸(¸

#
, the fibre pull-out energy can be deduced from

Equation 47 by neglecting the fibre-length and fibre-
orientation distributions

w
10
"

»
&
s
&
¸2

6d
&

for ¸(¸
#

(48)

Equation 48 is the same as Equation 2. Moreover, if
the inclined fibre strength effect is neglected, i.e. A"0,
then Equations 39a—c become

w
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&
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h/0
P
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l/0

w
10

(l, h)g (h) cos(h) dldhD
for ¸(¸

#
exp(!lp/2) (49a)
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(49c)

where h
0
"ln(¸/¸

#
)/l and ¸

#h
"¸

#
/exp(lh); g(h)

is equivalent to sin hh(h) defined by Wetherhold and
Jain [6, 7] (see Equations 10—12). From Equations
49a—c, Equations 9a—c can be derived, and this limit-
ing case was studied by Wetherhold and Jain [6].

Equations 48 and 49a—c show that within the pres-
ent model, the previously existing fibre pull-out energy

theories are included as special cases.

1990
Figure 3 Fibre pull-out energy versus mean fibre length for
(a) ¸

#
"0.376 mm, (b) ¸

#
"0.837 mm, (c) ¸

#
"1.71 mm.

3. Results and discussion
Based on Equation 47 the fibre pull-out energy can be
predicted. The effects of mean fibre length and critical
fibre transfer length on the fibre pull-out energy are
shown in Fig. 3, where l"A"0.25, h1 "0.589 radian
(p"1 and q"2), ¸

.0$
"0.2 mm, d

&
"10 lm,

»
&
"0.20, s

&
"a

0
"10 MNm~2 (assuming a con-

stant interfacial frictional shear stress case by letting
a
1
"a

2
"0) and various ¸

#
. Under a given critical

fibre length, the fibre pull-out energy increases with
the mean fibre length until a certain value slightly less
than the critical transfer length ¸

#
, at which the max-

imum of fibre pull-out energy is reached (see points A,
B and C in the curves). This is because the pull-out
energy is contributed by subcritical fibres of lengths
less than ¸

#h
and supercritical fibres of lengths greater

than ¸
#h

, the sum of the two parts reaches the max-
imum at a certain mean fibre length slightly less than
¸
#h

. Afterwards, the fibre pull-out energy decreases
with the mean fibre length, because more fibres will
rupture and will not contribute to the fibre pull-out
energy. For different critical fibre length cases the fibre
pull-out energy increases with the critical fibre length.
When ¸

#
"0.376 mm, the maximum fibre pull-out

energy is less than 1.5 kJm~2 ; however, when
¸
#
"1.71 mm, the fibre pull-out energy is large and

greater than 22 kJ m~2 when the mean fibre length is
between about 0.85 and 1.75 mm. So, a large critical
fibre length is very efficient for achieving a high fibre
pull-out energy. This can be further shown by Table I
for ¸

#
"9.371 mm; the fibre pull-out energy can be

very large, e.g. 1373.66 kJm~2 at ¸" 1̧ "9.371
for a undirectional fibre composite case and
476.20 kJ m~2 at ¸" 1̧ for a randomly aligned fibre
composite case. However, in experiments, such large
fracture energies of short fibre composites were scarely
attained; this may be because such large critical fibre
lengths were scarcely achieved. In summary, when the
mean fibre length is small, the fibre pull-out energy is
small, no matter how large the critical fibre length;
when the mean fibre length is comparatively large (e.g.
about 1 mm in this study), the fibre pull-out energy

would be large if the critical fibre length could



TABLE I Fibre pull-out energy versus mean fibre length for
¸
#
"9.371 mm

w
10

(kJm~2)

1̧ h1 "0.785 h1 "0
(mm)

0.218 1.76 2.29
0.241 2.50 3.53
0.279 3.93 5.56
0.376 9.01 12.76
0.837 63.91 93.32
1.710 256.59 447.06
9.371 476.20 1373.66

TABLE II The effect of fibre diameter, d
&
on fibre pull-out energy

Mean fibre Fibre pull-out energy (kJ m~2)
length, 1̧ (mm)

d
&
"3.76 lm d

&
"8.37 lm d

&
"17.1 lm

0.218 3.88 2.68 1.33
0.241 3.96 3.68 1.88
0.279 3.86 5.20 2.95
0.376 3.30 7.31 6.38
0.837 1.84 6.70 15.12
1.119 1.42 5.66 15.12
1.710 0.98 4.18 13.11
2.315 0.74 3.29 11.12
2.935 0.59 2.69 9.51
3.564 0.49 2.27 8.26
4.515 0.39 1.84 6.88
9.371 0.19 0.90 3.54

be large (see curve c), otherwise the fibre pull-out
energy would be small (see curve a). From Equation
1 it can be seen that the critical fibre length is propor-
tional to the fibre tensile strength and inversely pro-
portional to the interfacial shear stress; therefore,
high-strength fibres and a weakly bonded interface are
conducive to obtaining a high fibre pull-out energy.
Moreover, the critical fibre length is proportional to
the fibre diameter (see Equation 1); however, the
variation of fibre pull-out energy with fibre diameter
cannot be shown only from this point, because the
expression for fibre pull-out energy (see Equation 47)
contains a term of 1/d

&
. Table II shows the effect of

fibre diameter on the fibre pull-out energy for the case
of ¸

#
"0.837 mm. It can be concluded from Table II

that a smaller fibre diameter corresponds to a higher
fibre pull-out energy when the mean fibre length is
small; however, for the case of large mean fibre length,
a larger fibre diameter corresponds to a higher fibre
pull-out energy.

Fig. 4 shows the effect of mean fibre-orientation
angle, h1 , or fibre-orientation coefficient, fh , on the fibre
pull-out energy, where l"A"0.25, ¸

#
"1.71 mm,

¸
.0$

"0.2 mm, d
&
"10 lm, »

&
"0.20, s

&
"10 MNm~2

and various h1 (i.e. 0, 0.589 and 0.785 rad) or fh
(i.e. 1, 0.33 and 0). Fig. 4 reveals that the fibre pull-out
energy decreases with the increase of mean fibre-
orientation angle, h1 , or the decrease of fh . For the
randomly distributed fibre case, h1 "0.785 rad or
fh"0, the maximum (about 20 kJ m~2) is attained at

the vicinity of 1̧ "0.873 mm. For the unidirectional
Figure 4 Fibre pull-out energy versus mean fibre length for
(a) h1 "0 or fh"1, (b) h1 "0.589 or fh"0.33; (c) h1 "0.785 or
fh"0.

Figure 5 Fibre pull-out energy versus mean fibre length for various
l: (a) l"0, (b) l"0.25, (c) l"0.5, (d) l"0.75, (e) l"1.

fibre composite case, i.e. h1 "0 radian or fh"1, the
fibre pull-out energy reaches the maximum
(52 kJ m~2) at 1̧ "1.2 mm and the fibre pull-out en-
ergy is about 47 kJ m~2at 1̧ "0.873. So, for a given
fibre—matrix system, the unidirectional fibre com-
posite case gives the highest fibre pull-out energy if the
crack propagates perpendicular to the fibres.

The effect of snubbing friction on the fibre pull-
out energy is shown by Fig. 5, where A"0.25,
¸
.0$

"0.2 mm, d
&
"10 lm, »

&
"0.20, ¸

#
"1.71 mm,

s
&
"10 MNm~2, h1 "0.589 and various l. When the

mean fibre length is small (e.g. 1̧ (0.837 mm), the
fibre pull-out energy increases with the snubbing-fric-
tion coefficient, because the pull-out load is increased
by the snubbing-friction effect. As the mean fibre
length increases to a certain value, the fibre pull-out
energy is the same for two different l (see the crossing
points A and B, etc., in the curves). This can be
explained as follows. The fibre pull-out load is in-
creased by increasing the snubbing-friction coefficient;
on the other hand, the number of fibres active in the
bridging action reduces due to the fact that more
fibres will break by increasing l, when the two com-

peting effects balance out, the fibre pull-out energy is

1991



Figure 6 Fibre pull-out energy versus mean fibre length for
(a) A"0, (b) A"0.25, (c) A"0.5, (d) A"0.75, (e) A"1.

Figure 7 Percentage of supercritical fibres of lengths greater than
¸
#h

for (a) A"0, (b) A"0.25, (c) A"0.5, (d) A"0.75, (e) A"1.

the same for two different l. When the mean fibre
length is large, the fibre pull-out energy decreases with
the snubbing-friction coefficient, because for large
mean fibre-length cases, more fibres will fracture and
do not contribute to the fibre pull-out energy.

Fig. 6 shows the effect of the parameter A on the
fibre pull-out energy, where l"0.25, ¸

.0$
"0.2 mm,

d
&
"10 lm, »

&
"0.20, ¸

#
"1.71 mm, s

&
"10 MNm~2,

h1 "0.589 and various A. As the curves show, the fibre
pull-out energy decreases with the increase of para-
meter A. This can be explained by Fig. 7 which ex-
presses the effect of A on the percentage of supercriti-
cal fibres of lengths greater than ¸

#h
. Because the

percentage of supercritical fibres increases with para-
meter A, the percentage of the fibres which will frac-
ture and do not contribute to the fibre pull-out energy
will increase with A, therefore w

10
decreases with A.

Table III shows the effect of mode fibre length
on the fibre pull-out energy, where l"A"0.25,
¸
#
"1.71 mm, 1̧ "1 and 0.2 mm, d

&
"10 lm,

»
&
"0.20, s

&
"10 MN m~2, h1 "0.589 and various

¸
.0$

. It can be seen from Table III that the fibre
pull-out energy increases slightly with the mode fibre
length when the mean fibre length is large (e.g.
1̧ "1 mm) and decreases with ¸ when the mean
.0$
fibre length is small (e.g. 1̧ "0.2 mm).

1992
TABLE III Fibre pull-out energy (kJ m~2) versus mode fibre
length (mm) for 1̧ "1 and 0.2 mm

1̧ "1 mm 1̧ "0.2 mm

¸
.0$

w
10

¸
.0$

w
10

0.1172 25.62 0.0234 1.12
0.2388 26.41 0.0478 0.95
0.3505 27.08 0.0701 0.83
0.4484 27.65 0.0897 0.73
0.5326 28.15 0.1065 0.66
0.6042 28.57 0.1208 0.60
0.7166 29.25 0.1433 0.52

Figure 8 Fibre pull-out energy versus mean fibre length for
(a) slip-softening, a

0
"10 MNm~2, a

1
"[!1.245a

0
/(¸/2)], a

2
"

[0.395a
0
/(¸/2)2]; (b) constant interfacial frictional shear stress,

a
0
"10 MNm~2 ; (c) slip hardening, a

0
"10MNm~2, a

1
"2a

0
/¸,

a
2
"a

0
/(¸/2)2.

The fibre pull-out energy is shown in Fig. 8 for the
cases of slip softening, constant interfacial frictional
shear stress and slip hardening, where l"A"0.25,
¸
.0$

"0.2 mm, d
&
"10 lm, »

&
"0.20, ¸

#
"0.837 mm

and h1 "0.589. The condition that there is no pull-out
of the longer embedded segments will be satisfied if
Equations 7 and 8 are satisfied. For the cases of
constant s

&
and slip softening, this condition will be

satisfied automatically. For satisfying this condi-
tion the slip-hardening interface is represented by
a
1
/a

0
"2¸, a

2
/a

0
"(2/¸)2. It can be seen from Fig. 8

that the case of slip hardening corresponds to the
comparatively large fibre pull-out energy, the case of
constant s

&
to the moderate fibre pull-out energy, and

the case of slip softening to the comparatively small
fibre pull-out energy.

Additionally, it can be seen from Equation 47 that
as the fibre-volume fraction and the interfacial fric-
tional shear stress (assuming a constant interfacial
frictional shear stress case) increase, the fibre pull-out
energy will increase proportionally. Thus, in order to
achieve a high fibre pull-out energy and hence a high
fracture toughness of short fibre composites, a high
interfacial frictional shear stress and a high fibre-vol-
ume fraction are favourable. But, as the fibre-volume

fraction increases, the matrix-volume fraction will de-



crease, so the toughness contribution of matrix-related
mechanisms will reduce. The two competing effects
may result in an optimum fibre-volume fraction for
the maximum fracture toughness for some short fibre
composites in which both the matrix and fibres are
active in contributing to the fracture toughness of
composites (see [20]). However, this was not the pur-
pose of the present study.

4. Conclusion
The fibre pull-out energy has been studied for
short fibre composites in which there are fibre-length
and fibre-orientation distributions. The results have
shown that a large mean fibre length may result in
a high fibre pull-out energy if the critical fibre length
is large; otherwise the fibre pull-out energy is compar-
atively small. The high-strength fibres, the weakly
bonded interface between fibres and matrix, the low
mean fibre-orientation angle and the small value of
the parameter A for determining the inclined strength
of fibres, are conducive to achieving a high fibre pull-
out energy. A smaller fibre diameter corresponds to
a higher fibre pull-out energy when the mean fibre
length is small, while a large fibre diameter is benefi-
cial to obtaining a high fibre pull-out energy when the
mean fibre length is large. A larger snubbing-friction
coefficient corresponds to a higher fibre pull-out en-
ergy when the mean fibre length is small, while a small
snubbing-friction coefficient is beneficial to obtaining
a high fibre pull-out energy for the large mean fibre
length case. Slip-hardening cases give a higher fibre
pull-out energy than that of corresponding constant
interfacial frictional shear stress cases, and slip-soften-
ing cases give a lower fibre pull-out energy than that of
corresponding constant interfacial frictional shear
stress cases. Moreover, a comparatively high fibre-
volume fraction and a large interfacial frictional shear
stress are favourable to achieving a high fibre pull-out
energy. The fibre pull-out energy increases slightly
with the mode fibre length when the mean fibre length
is large, while the fibre pull-out energy decreases with
the mode fibre length when the mean fibre length is
small.
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